
Eurographics Symposium on Rendering 2024
E Garces and E. Haines
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 4

Neural Histogram-Based Glint Rendering of Surfaces With
Spatially Varying Roughness

I. Shah1 L. E. Gamboa2† A. Gruson3 P. J. Narayanan1

1CVIT, International Institute of Information Technology, Hyderabad (IIIT-H), India
2Universidad Michoacana de San Nicolás de Hidalgo, Mexico

3École de Technologie Supérieure, Canada

Figure 1: Our method improves realism by supporting high-frequency normal-mapped surfaces under complex lighting configurations.
Compared to previous methods, our approach has moderate memory requirements and scales well to multiple normal maps (we show four).
Additionally, it has minimal error compared to the ground truth, and requires only one sample per pixel evaluation, excluding shadows. Our
method supports freely varying editable spatial roughness (orange) while maintaining analytical integration of the material and lighting
responses at no additional cost.

Abstract
The complex, glinty appearance of detailed normal-mapped surfaces at different scales requires expensive per-pixel Normal
Distribution Function computations. Moreover, large light sources further compound this integration and increase the noise
in the Monte Carlo renderer. Specialized rendering techniques that explicitly express the underlying normal distribution have
been developed to improve performance for glinty surfaces controlled by a fixed material roughness. We present a new method
that supports spatially varying roughness based on a neural histogram that computes per-pixel NDFs with arbitrary positions
and sizes. Our representation is both memory and compute efficient. Additionally, we fully integrate direct illumination for all
light directions in constant time. Our approach decouples roughness and normal distribution, allowing the live editing of the
spatially varying roughness of complex normal-mapped objects. We demonstrate that our approach improves on previous work
by achieving smaller footprints while offering GPU-friendly computation and compact representation.

1. Introduction

Many real-world objects exhibit a rich, glinty appearance due to
mesoscale features like scratches, bumps, or flakes. Efficiently
modeling these appearances at different scales is important for

† Corresponding author: luis.gamboa@umich.mx

achieving realism in the rendering process. This phenomenon can
arise even under large light sources, requiring additional integra-
tion.

Material appearance is often modeled using high-resolution nor-
mal maps. Unfortunately, normal map filtering is not a linear pro-
cess and requires special filtering techniques to keep the appearance

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0009-0000-7104-4578
https://orcid.org/0000-0002-6439-1974
https://orcid.org/0000-0003-0773-2725
https://orcid.org/0000-0002-7164-4917

2 of 12 Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness

of the surface across scales. Dedicated data structures [AWKK21,
GGN18] or hierarchical representations [YHMR16, DLW∗22] are
used to model the underlying normal distribution (NDF) inside the
pixel footprint. These techniques can be expensive in memory or
not support analytical integration over large light sources.

The NDF is typically extended by an intrinsic roughness, intro-
duced by Yan et al. [YHJ∗14] to avoid singularities. This parame-
ter can also be used to improve the expressiveness of the material
model. Intrinsic roughness can be understood by considering a two-
level microfacet model similar to Holzschuch et al. [HP17] where
the normal map models the distribution of mesofacets while the
intrinsic roughness models the distribution of microfacets on each
mesofacet. Adding the ability to modulate the intrinsic roughness
spatially allows for additional artistic control. For example, one can
model impurities such as dirt by using a higher intrinsic roughness
(fig. 1). Such details significantly improve realism and cannot be re-
produced with only a normal map. For succinctness, we will refer
to intrinsic roughness as roughness in the rest of the article.

We propose a new method to accurately and efficiently com-
pute per-pixel NDF (P-NDF) from high-resolution normal maps
and varying roughness under complex lighting. We achieve this by
combining a roughness independent binned NDF [GGN18], with
a novel neural-histogram and an improved adaptive discretization.
Our method needs 60× less memory for representing the under-
lying distribution compared to Gamboa et al. [GGN18]. Our ap-
proach introduces support for spatially varying roughness at negli-
gible additional cost both in memory and performance. Our main
contributions are:

• An adaptive binning strategy to reduce discretization error of the
continuous P-NDF.

• A neural network-based method for obtaining the spherical his-
togram for a patch, reducing the memory requirements and im-
proving the performance of the algorithm.

• Support for double filtering both the material appearance and
lighting using Spherical Harmonics (SH).

• A compact and tabulated Zonal Harmonics (ZH) representation
and efficient on-the-fly rotation to render glinty surfaces with
spatially varying (SV) roughness.

2. Related work

In this section, we relate to existing works grouped by how they
represent and query the NDF.

Microfacet theory Similarly to prior works, our method is based
on microfacet theory and targets to support the filtering opera-
tion of the NDF at different scales, however, unlike the analytical
model [BS63, WMLT07], our BSDF model parameterize the NDF
by using a normal map. Support for SV roughness in the analytical
model is possible by relying on linear filtering of a roughness tex-
ture or top level integration, however, this approach cannot be used
for normal-mapped NDFs.

Implicit representations Some prior works use an implicit rep-
resentation for the NDF, meaning the normal distribution is gen-
erated on-the-fly. For instance, Jakob et al. [JHY∗14] stochasti-
cally produce discrete oriented facets and determine how many

are well aligned based on the spatial and directional support. Sim-
ilar ideas have been adapted to real-time rendering based on bi-
scale NDF [ZK16], and physically-based multi-scale precomputed
NDF [CSDD20]. Our approach differs as we explicitly express the
NDF from the normal map using neural networks and target offline
rendering. Raymond et al. [RGB16] have developed a specialized
SV-BRDF for scratches that support multi-scale filtering and model
inter-reflection inside the scratches. Their approach is compact but
does not generalize to arbitrary distributions.

Explicit NDF Filtering the underlying normal map accurately is
a challenging task. LEAN [OB10] and LEADR [DHI∗13] express
multiscale auxiliary statistics such as mean and variance that are
compatible with MIP-mapping [Wil83]. These methods are cheap
and effective but cannot model complex materials’ glint distribu-
tions across different scales accurately. Yan et al. [YHJ∗14] devel-
oped a hierarchical technique to prune normals in the NDF that do
not contribute to the final shading. While this technique is highly
accurate and can support SV roughness, it is expensive for large
footprint sizes and light sources. Later approaches have improved
performance [YHMR16] or introduced wave-effects [YHW∗18],
however, there’s no support for SV roughness or analytic integra-
tion of large light sources. Wang et al. [WDH20] accelerate a 4D
Gaussian query by blending and synthesizing different distribu-
tions. Additionally, their technique supports environment maps us-
ing a prefiltering approach, however, they cannot synthesize macro-
scale glints. Deng et al. [DLW∗22] developed a prefiltering method
that provides constant-cost for rendering glints. They achieve this
by expressing the non-overlapping NDF images for a 32×32 foot-
print and then compressing this representation using tensor decom-
position [KB09]. Their approach uses MIP-mapping for larger foot-
prints, however, we found that trilinearly interpolated NDFs result
in a blurry distribution. In contrast, we use a Binned NDF repre-
sentation with a neural network to properly interpolate NDF at dif-
ferent scales without introducing blurriness.

Binned NDF Gamboa et al. [GGN18] combine normal map fil-
tering and environment map lighting. Their technique uses SH ex-
pressed in the half-direction domain to compute the double product
integral between a histogram-based NDF and environment light-
ing. Although this approach is computationally efficient, it requires
a significant amount of memory, i.e., 4.8 GB for a normal map
with a resolution of 2K ×2K. We borrow from their ideas, improv-
ing data representation to increase accuracy and achieve a smaller
memory footprint and higher performance while adding support for
SV roughness. The approach by Atanosov et al. [AWKK21] uses a
forest of kd-trees to accelerate histogram lookup. They set the bin
size based on the roughness of the surface. While this data repre-
sentation is not memory intensive (∼10-40 MB depending on his-
togram resolution), the lookup cost still depends on footprint size.
Furthermore, it also loses the ability to filter both surface appear-
ance and environmental lighting. This technique could also support
SV roughness by choosing a bin size in accordance to the mini-
mum roughness, but, it’s impact on the performance needs to be
evaluated.

Neural-network in material models Neural models [MESK22]
or differentiable indirection [DMD∗23] have proven to be an al-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness 3 of 12

ternative versatile compression scheme. In particular, neural net-
works have been used extensively for BSDF appearance com-
pression [HGC∗20, RGJW20, FWH∗22] or improving filtering
for SV-BRDF map [GFL∗22]. A recent approach by Zeltner et
al. [ZRW∗23], demonstrates how careful network design and hi-
erarchical MIP-mapped latent code [KMX∗21] can capture de-
tailed surface appearance at different scales. We also use Neu-
MIP [KMX∗21] in our technique to compress and pre-filter
our representation. Other neural architectures, such as genera-
tive ones, can be used to generate on-the-fly targeted NDF dis-
tributions [KHX∗19] or even complex material graphs [GHS∗22,
HGH∗23]. These generative approaches lift storage limitations re-
garding the finite texture resolution. Our technique relies on texture
representation and these works are considered orthogonal.

Note that most deep appearance models require MC integrations
of the incoming lighting. Specialized approaches have been devel-
oped to generate samples proportional to the neural material. Xu et
al.’s [XWH∗23] histogram approach can be seen as similar to ours;
however, our histogram captures the NDF profile and supports pre-
filtering operations.

3. Background

Our method is memory-efficient, GPU-friendly, and capable of an-
alytical integration. We employ explicit NDF and Spherical Har-
monics for surface appearance modelling and light integration. We
also support spatially varying roughness and don’t need additional
precomputations when the roughness map changes. We now ex-
plain the relevant concepts briefly.

3.1. Explicit NDF

Microfacet models [CT81] have been traditionally used for describ-
ing the BRDF at a point x

fr(x,ωi,ωo) =
F(ωi ·ωo)G(ωi,ωo)D(x,ωh)

4(n ·ωo)(n ·ωi)
, (1)

where ωi, ωo are the incident and outgoing directions respectively,
n is the geometric normal at x and ωh =

ωi+ωo
∥ωi+ωo∥ is the half-vector.

F and G are the Fresnel and shadowing-masking terms, respec-
tively, and the normal distribution function (NDF), D(x,ωh), de-
scribes the distribution of microfacets on the surface. In this pa-
per we focus on explicit NDFs defined by an underlying high-
resolution normal map instead of infinitesimally small micro-
facets [YHJ∗14].

The explicit NDF (P-NDF) is defined by a set of normals present
in a patch P on the normal map. The patch is given by projecting
the pixel footprint on the normal map. Yan et al. [YHJ∗14] and sub-
sequent work perform 2D Gaussian-weighting across the footprint.
Contrary to this, we use equal-weighting similar to prior work on
discrete P-NDF [JHY∗14, GGN18, AWKK21]:

D(P,ωh) =
1

NP
∑

x∈P
Gr(ωh;ωx,σs), (2)

where Gr is an isotropic Gaussian that enables intrinsic roughness
σs around a mean direction obtained from the normal map, i.e.
ωx = normal(x), and NP is the number of normals in the patch.

We can further discretize normals in the normal map into a set Ω̂

of directions ω j, resulting in the binned P-NDF:

D̂(P,ωh) =
1

NP
∑

ω j∈Ω̂

cPω j Gr(ωh;ω j,σs) , (3)

where cPω j indicates the count for normal ω j inside footprint P . We
discuss the set Ω̂ and how we choose it in section 4.1. Gamboa et
al. [GGN18] store this binned NDF as a spherical histogram, which
is memory inefficient. To this end, in section 4.2 we propose a
neural-based histogram for efficiently querying arbitrary footprints
and achieving a low-memory profile.

3.2. Spherical Harmonics

Spherical Harmonics are orthonormal basis functions defined on
the sphere that allows us to express directionally-varying func-
tions as a weighted sum. The real basis functions Y for band
l ∈ {0, . . . , lmax} and index m ∈ {−lmax, . . . , lmax} are defined as:

Y l
m(ω) =

√

2 Km
l P−m

l (cosθ) sin(−mφ) m < 0
Km

l Pm
l (cosθ) m = 0√

2 Km
l Pm

l (cosθ) cos(mφ) m > 0

(4)

where P are the associated Legendre Polynomials and K are the
normalization factors.

Given a function f , computing its SH coefficients requires:

f m
l =

∫
S2

f (ω)Y m
l (ω)dω, (5)

and with sufficient SH order (i.e. lmax), function f can be perfectly
represented by a vector fSH of all coefficients f m

l .

One very useful property of SH is the double product integral,
which can be computed exactly as a dot product of the SH vectors
of each function, i.e.,

∫
S2 f (ω)g(ω)dω = (fSH ·gSH), meaning that

a Light-BRDF integral can be efficiently computed if we have the
corresponding SH coefficients.

3.3. Filtered Appearance Rendering

Typically, the rendering equation [Kaj86] is a part of the double
integral that filters point-wise contributions to remove aliasing:

Lo(P,ωo) =
∫
P

∫
Ω

Li(x,ωi) fr(x,ωi,ωo)(n ·ωi)dωidx . (6)

Monte Carlo integrators perform this filtering task implicitly at no
extra cost per sample, however, using high-resolution normal maps
requires extremely high sample counts to resolve all normal varia-
tion and lighting effects correctly [YHJ∗14]. Under a far-field as-
sumption and a microfacet model, we can consider all normal fil-
tering and variation inside the P-NDF [YHJ∗14, JHY∗14]:

Lo(P,ωo)≈
∫

Ω

Li(x,ωi)F(ωi ·ωo)G(ωi,ωo)D̂(P,ωh)

4(n ·ωo)
dωi , (7)

with P computed around the observed point x using e.g. ray differ-
entials [Ige99]. We can approximate eq. (7) by decoupling F and
G terms, and then re-parameterize to half-direction space to form a

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 12 Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness

Figure 2: For a pixel footprint with location (u,v) and size s, we query our Adaptive Neural Histogram (sections 4.1 & 4.2) to get bin counts.
SH coefficients for each rotated Gaussian lobe with roughness σs are obtained through on-the-fly Zonal Harmonics rotation (section 4.3).
Multiplying these coefficients with corresponding bin count yields the SH vector of the P-NDF. Finally, a dot product of the P-NDF and
Light SH vectors (section 3.3) results in the final shading.

double product Light-NDF integral. The effective problem to solve
becomes:

Lo(P,ωo)≈ F̂G(ωo)
∫

Ω

Li(x,ωi)D̂(P,ωh)dωi

= F̂G(ωo)
∫

Ωh

L̂i(x,ωo,ωh)4(ωh ·ωo)︸ ︷︷ ︸
Light

D̂(P,ωh)︸ ︷︷ ︸
NDF

dωh . (8)

Going between L̂i and Li is trivial as ωi = reflect(ωo,ωh). Project-
ing each function to SH allows solving eq. (8) efficiently with:

Lo(P,ωo)≈ F̂G(ωo)(LightSH(ωo) ·NDFSH(P)) . (9)

Successfully computing these coefficients is expensive, as project-
ing a function is an integration process, and under eq. (9) each SH
vector is dependent on either view direction or footprint. LightSH
can be precomputed densely for ωo for environment emitters.

Additionally, LightSH and NDFSH are in the global and lo-
cal frame, respectively, which mandates a change of frame, i.e.
an expensive SH rotation, before the dot product. Gamboa et
al. [GGN18] precomputed rotated SH lobes tied to a fixed rough-
ness to accelerate this process. Instead, in section 4.3 we show how
to obtain an arbitrary roughness NDFSH relying on on-the-fly Zonal
Harmonics rotation while lowering memory requirements and im-
proving performance.

4. Method

Our method pipeline is shown in Figure 2. We introduce an adap-
tive binning strategy (Sec 4.1), that reduces discretization errors
and significantly improves rendering quality for equal histogram
resolution. Our neural histogram (Sec 4.2) compresses and predicts
this adaptive representation, allowing efficient appearance filtering.
Finally, we propose to change how SH coefficients of P-NDF are
calculated, reducing the memory requirement and allowing spatial
varying or live editing of intrinsic roughness (section 4.3).

4.1. Adaptive Binning

The binned P-NDF introduces discretization errors, especially at
lower roughness values or under sharp lighting. This error trans-

Figure 3: Comparing uniform and adaptive binning techniques un-
der low-frequency (orange) and high-frequency (green) lighting.
We render all images with Monte Carlo to isolate the error caused
by using the binned NDF. Adaptive binning clearly improves qual-
ity (FLIP difference scaled by 2×).

lates as structural artifacts inside the rendered images (Figure 3,
left). A naïve way of reducing this error is to increase the his-
togram resolution at the cost of runtime and storage requirements.
We mitigate this by distributing bins based on the distribution of
normals in the normal map (Figure 3, center). Similar to Gamboa
et al. [GGN18], we parameterize the histogram bins using spherical
coordinates, i.e.

θ = arccos(ωh.z)

φ = arctan(ωh.y,ωh.x) . (10)

Given a normal map, we want to identify the set Ω̂ of Nθ × Nφ

bin centers that best represent the underlying distribution. We have
analyzed multiple normal maps and observed that the distribution
of φ is mostly uniform. Based on this observation, we seek to find
only the optimal θ bins while retaining the uniform discretization
along φ.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness 5 of 12

Figure 4: Comparison between Deng et al. [DLW∗22] style linear
interpolation and our technique. Our use of neural networks re-
sults in fewer interpolation artifacts being observed. As we can see
from the reference (middle row insets), our method (bottom row)
reproduces the resulting appearance more faithfully. We use Mean
Absolute Percentage Error (MAPE) to visualize the difference bet-
ter and report both MAPE and FLIP scores.

Adaptive θ discretization Our approach uses K-Means++
[AV07], which improves the seeding procedure for the K-Means al-
gorithm that minimizes an L2 norm. More specifically, we use the
greedy initialization variant of this technique. Compared to simpler
solutions such as uniformly distributing the bins, K-Means assigns
bins to clusters, emphasizing regions with a high concentration of
normals and providing a balanced representation important to con-
serve the material’s appearance (Figure 3). The adaptive bins are
computed once by considering all of the normals of the normal
map.

4.2. Neural Histogram

We present a compact, flexible representation that supports filtering
for different pixel footprints and can be easily parallelized on the
GPU. This replaces the memory-intensive summed area table in
prior work [GGN18]. Our main idea is to compress the underlying
distribution by storing a sparse histogram for a given footprint and
perform interpolation at run-time to reconstruct the histogram for
the footprint. In practice, we set the minimum footprint size s= 8×
8 to balance the memory budget and the accuracy of our baseline
model. We can explicitly iterate over all the corresponding normals
for smaller footprints.

Our approach is similar to Deng et al. [DLW∗22], which converts
a high-frequency normal map into a set of sparsely distributed NDF
images organized as a grid and compresses each image NDF using
tensor decomposition [KB09]. MIP-mapping interpolation is then
used to reconstruct the NDF image associated with a given query,
decompressing their decomposition for a single direction. In con-
trast, we directly obtain the requested histogram from our network.
Additionally, their representation is tied to the input NDF image set
computed from fixed intrinsic roughness. This process fundamen-
tally differs from ours since a histogram is naturally roughness-
independent.

In Figure 4, we show that trilinear interpolation-based methods
suffer from additional blurriness due to linearly blending different

Figure 5: Our proposed neural architecture. a) Our neural texture
pyramid is inspired by [KMX∗21] and decoder MLP, which pre-
dicts a partial histogram. b) We decompose the histogram into mul-
tiple smaller partial histograms and compress them using Nθ + 1
smaller MLPs.

NDFs. In contrast, our method uses a deep learning-based approach
to produce faithful surface appearances. For this comparison, we
use a scratches normal map with a fixed roughness of 0.05 and
a point light. Similar results were observed for different normal
maps. The reference is computed with MC using square footprints
to isolate the differences between the NDF representation and in-
terpolation approaches. In the next subsection, we will empirically
describe and justify our network design.

4.2.1. Baseline neural model

We adapt NeuMIP’s design [KMX∗21], which uses a feature pyra-
mid as a natural solution to our problem. The feature pyramid is
arranged as textures with decreasing spatial resolution, similar to
MIP-mapping. We obtain the feature vector by trilinearly interpo-
lating inside the feature pyramid for a given footprint size and loca-
tion. Then, a Multi-Layer Perceptron (MLP) network decodes them
to obtain the final histogram for the given footprint.

We experimented by replacing trilinear interpolation to choose
one level stochastically [ZRW∗23], but found the additional noise
added to final images detrimental as our integration is noise-free.
Usually, our targeted histogram resolution is 9× 32 bins. For this
resolution, the baseline model uses MLP with 4 layers of width 256
each. Each layer is followed by a ReLU non-linearity. We apply the
TriangleWave non-linearity with amplitude of 1 and period of 2 on
the final layer since the normalized range of histogram count will
always lie in the range 0−1. We normalize this output by the total
sum of predicted logits to ensure they sum to 1.

4.2.2. Improved network design

While the baseline method works well, it has two issues. First, the
size of the MLP required for high-quality results is too expensive,
as it directly affects the performance of histogram queries. Sec-
ond, scaling to higher histogram resolutions requires an even big-
ger MLP and potentially larger feature vectors. Keeping multiple
MLPs rather than a large one is beneficial as it allows important

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 12 Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness

(a) Scratches

(b) Isotropic

(c) Flakes

(d) Brushed Metal

Figure 6: Comparison between the baseline neural model and our multiple small network design for different normal maps and P-NDF at
three different scales. The summed area table (SAT) acts as a reference pixel response, but uses 87× more memory than our neural approach.
Our network design outperforms the baseline model while maintaining quality across different scales.

practical optimization, e.g., operation fusing or exploiting the cur-
rent GPU caching architecture (Nvidia’s Ada Lovelace).

Based on these issues, we propose partitioning the histogram
into partial histograms and training multiple MLPs to predict them
(fig. 5). The normalized bin count can be expressed as a probability
mass function P(φi,θ j) for a bin oriented in (φi,θ j). We can then
decompose this density as

P(φi,θ j) = P(φi|θ j)P(θ j)≈ P∗
Φ, j(φi)P

∗
Θ(θ j) , (11)

where P∗
Φ, j is the learned conditional partial-histogram with θ j ori-

ented bins, and P∗
Θ is the learned densities of φs. Figure 5 show our

proposed architecture. We need Nθ +1 neural network inference to
estimate the full histogram.

4.2.3. Baseline vs improved architecture

Our improved architecture (section 4.2.2) relies on partitioning the
histogram to make learning the signal easier. Instead of using the
baseline model (section 4.2.1), which consists of a 256× 4 MLP,
we can use a much smaller MLP of size 64× 2 for better results.
Furthermore, since individual evaluations of the smaller MLP are
much faster than the larger MLP, evaluating multiple such MLP
is still faster. Our improved version is 1.2×-1.3× faster than the
baseline model. This difference can be explained as the improved
architecture also respects hardware constraints on current GPU, al-
lowing faster computation and fused networks.

Figure 6 shows that both methods resolve different normal dis-
tributions at different scales, however, our improved architecture
always produces a more accurate NDF distribution. This results in
fewer errors in the generated renders. For reference, we use the
NDF SAT representation used in Gamboa et al. [GGN18], which
accurately reproduces the NDF distribution at the cost of using 87×
more memory than our neural representation. More comparisons
between our model and the technique of Gamboa et al. are avail-
able in the results section.

4.3. On-the-fly Rotation

Given the spherical histogram of a footprint, the SH coefficients
of the P-NDF, i.e. substitute eq. (3) in eq. (5), are computed as
follows:

NDFSH(P) =
1

NP
∑

ω j∈Ω̂

cPω j GSH(ω j,σs) , (12)

where cPω j is the count of ω j in P and GSH(ω j,σs) are the SH
coefficients of a Gaussian lobe oriented in direction ω j and rough-
ness σs. Notice that if ω j = ω j then the resulting SH coefficients
are in the local frame, however, when solving eq. (12) we can go
straight to the global frame by making ω j = toGlobal(ω j). Gamboa
et al. [GGN18] accelerate this computation by storing GSH coeffi-
cients with fixed directions at 4× higher resolution than the his-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness 7 of 12

Figure 7: Comparison between precomputed [GGN18] and our
on-the-fly computation of NDFSH coefficients. The (2×) FLIP dif-
ference (bottom row) shows that our method eliminates block-like
artifacts stemming from the discretization of stored SH coefficients.

togram resolution (i.e. 65×128). Then, at runtime, they bi-linearly
interpolate to compute the SH coefficients for an arbitrary direc-
tion. This approach has two issues:

• Interpolation and discretization can generate visual artifacts with
low roughness surfaces (fig. 7, left).

• The rotation array has fixed σs and storage cost significantly in-
creases if there are objects with spatially varying roughness or if
there are objects with different roughnesses.

4.3.1. Fast Rotation of Zonal Harmonics

Zonal Harmonics (ZH) are a special case of SH that can represent
circularly symmetric functions aligned about z using only the m= 0
coefficients. Of interest, is the fast rotation property of ZH [SLS05]
that allows computing the resulting SH coefficients gm

l after rotat-
ing ZH coefficients f 0

l to an arbitrary direction ω j by evaluating
and scaling the basis functions Y m

l in that direction:

gm
l = f 0

l Y m
l (ω j)

√
4π

(2l +1)
, (13)

We propose to use this property along with precomputation to per-
form fast on-the-fly rotation.

4.3.2. On-the-fly Rotation

Given ZH coefficients for a canonically oriented Gaussian lobe we
rotate them on-the-fly to remove discretization error (fig. 7, center).
Furthermore, the storage requirement is reduced drastically from
114 MB to 240 B for order-60 SH, using 32-bit floats.

To perform the fast rotation, we need to evaluate the SH basis
functions at a given ω j direction (eq. (13)). To accelerate this op-
eration, we precompute the value of Legendre polynomials densely
for different θ, and we bake in the normalization factors as well
(see eq. (4)). For a resolution of 2048 and order-60, the precom-
puted data requires a storage space of 30 MB. Notice that this tex-
ture is common for the entire scene and remains independent of the
roughness or any other scene parameter.

4.3.3. Spatially Varying Roughness

A benefit of our approach is that the reduced memory footprint
allows us to precompute and store the ZH coefficients for many

roughness values, enabling support for spatially varying roughness.
In practice, we precompute the ZH coefficients for roughness val-
ues from 0−1 at 1000 uniformly distributed points. At runtime, we
linearly interpolate the ZH coefficients from the two nearest σs and
then perform fast rotation to obtain the desired NDFSH. Storing the
ZH values for 1000 σs values for order-60 takes roughly 240 KB.

5. Implementation

5.1. Training

We implement neural networks using TinyCudaNN [M2̈1] and Py-
Torch [PGC∗17] for training. All experiments are conducted on an
NVIDIA RTX 4090 GPU. Training samples are generated by sam-
pling the footprint center X ∼ U(0,1) and a random normalized
footprint size σ ∼ λe−λx. Experimentally, we found that setting
λ = 16 works well. We clamp the resulting footprint size to a min-
imum of 8 × 8 and train each feature pyramid/decoder indepen-
dently. We use the Adam [KB14] optimizer with a learning rate of
10−3 for both the network weights and learnable feature vectors.
We generate 218 samples per iteration and train each network for
20k iterations, leaving us with ∼ 5 billion training samples gener-
ated online. Each feature pyramid/decoder pair takes ∼ 10 mins to
train, which leaves us with a total training time of ∼ 1.5 hours.
While the preprocessing time required for our method is higher
than Gamboa et al. [GGN18], the training is required only once
for each normal map and can be reused for different shapes and
under different illumination. Latent code and network weights are
stored in half-precision because it does not affect the quality of our
generated images.

We train the network to minimize the KL Divergence
DKL(P∗||P) between the partial-histogram prediction P∗ and
ground truth partial-histogram P. The ground truth is obtained effi-
ciently on-the-fly while training uses the SAT proposed by Gamboa
et al. [GGN18] with our adaptive binning (section 4.1). Note that
this SAT is only needed for training and doesn’t contribute to the
memory footprint during runtime. One hyper-parameter that needs
to be chosen is the width of the feature vector. We found that setting
the width equal to the size of the histogram works well in practice.
The neural network size has to be chosen according to the feature
vector size.

5.2. Rendering Pipeline

Our method is implemented completely on the GPU and uses Mit-
suba 3 [JSR∗22]. After getting the initial intersection points, we
build a G-Buffer consisting of the uv-coordinates and footprint size.
We then query our Neural Histogram to predict the histogram at
each intersection point. Finally, the histograms are projected to SH
while lights SH are calculated using bilinear interpolation in half-
vector space. We use a custom CUDA kernel to calculate the double
integral product from these coefficients and obtain the final shad-
ing. Since we use small MLPs, our method can be implemented in
a single mega-kernel with inline MLPs similar to Vaidyanathan et
al. [VSW∗23].

Like Gamboa et al. [GGN18], we also use Ratio Estima-
tors [HHM18] to add visibility information. This introduces some

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 12 Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness

Figure 8: From left to right: GxD [GGN18], our adaptive binning, neural network representation, on-the-fly rotation, and the P-NDF
reference. The reference is calculated using Monte-Carlo with 100k spp. We observe an improvement in both memory usage and rendering
quality with our approach. We use FLIP for the difference image.

variance noise in penumbra regions, to mitigate this, our images
are denoised with Optix AI Denoiser. We naively apply temporal
denoising for animated sequences by setting the motion vector to
zero as we expect small camera movement. More advanced denois-
ing methods are orthogonal to our technique.

Our work analytically integrates complex lighting (e.g., an en-
vironment map) reflected on a normal-mapped surface. No direc-
tional integration is required for delta lights, such as point or di-
rectional lights. These delta lights can be easily handled using a
pruning approach [GGN18] or directly evaluating our neural his-
togram. We use the former approach as its overhead is negligible,
i.e., ∼ 5-20 milliseconds.

6. Results & Discussion

We compare our technique to the histogram representation and
SH computation of Gamboa et al. [GGN18]. All techniques have
been implemented on GPU using a 9 × 32 resolution histogram.
The source code of our implementation is publicly available at
https://github.com/ishaanshah/neural_glint. All refer-
ences are calculated using Monte-Carlo with high sample counts.
Full images of all figures are available in the supplemental material
for further inspection. It is important to note that while Gamboa
et al. [GGN18] supports rectangular queries, we are restricted to a
square footprint, however, this limitation is more apparent at graz-
ing angles or other highly anisotropic footprints, where both are in-
efficient. Finally, we evaluate the results using the LDR- FLIP met-
ric [ANA∗20]. We display our results with Troy James Sobotka’s
AgX tone mapping function.

Empirically design study Figure 8 shows an ablation study of our
design choices compared to the Gamboa et al. [GGN18] technique.
The scene uses the isotropic normal map and a roughness of 0.01.

Our adaptive histogram representation and SH computation tech-
niques have improved rendering quality, while our neural network
has significantly reduced memory usage. Even though we need to
evaluate MLPs to obtain the histogram, this process is still faster
than the SAT NDF representation [GGN18]. This can be attributed
to GPUs being generally more bandwidth-limited than compute-
limited. Table 1 shows the compression ratio achieved compared
to prior work except for the light SH coefficients and the runtime
comparisons of histogram query and dot product. The light SH co-
efficients take 342 MB for order 60 SH in both methods. Overall,
our technique is faster and one order of magnitude more compact
compared to Gamboa et al. [GGN18]’s approach.

Comparison against Gamboa et al. Figure 9 shows additional
scenes with different normal maps. All scenes have an environ-
ment map and a point light. Animated sequences of each scene
can be found in the supplemental video. Each scene contains dif-
ferent normal and environment maps. Our technique consistently
produces more accurate results than Gamboa et al. [GGN18] while
using less memory. The video demonstrates that our technique does
not trade temporal stability for these gains. These results show that
our neural network component does not introduce visible artifacts.

Different histogram resolution Figure 10 shows the impact of
a higher-resolution histogram on our technique. Increasing the
histogram resolution helps to reduce some discretization errors.
Our compact representation enables design choices compared
to impractical memory requirements by SAT NDF representa-
tions [GGN18], which will require 18.4 GB at higher resolution.
Higher histogram resolution impacts the storage of the latent code,
which is proportional to the number of histogram bins. We must
also increase our decoder network from an MLP of size 64× 2 to
256×3 to maximize rendering quality. The runtime increase due to

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://github.com/ishaanshah/neural_glint

Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness 9 of 12

Table 1: Comparison of memory usage and runtime of our method with GxD [GGN18], using a 9× 32 histogram resolution on a 2K × 2K
normal map with SH-Order of 60. Environment map coefficient storage is excluded, as both methods remain the same. The runtimes are
calculated assuming the glinty materials fills the entire screen with resolution 1920×1080.

Memory Runtime (s)
Histogram BSDF Coeffs Km

l Pm
l (θ) Total Histogram SH computation Total

GxD 4.8 GB 114 MB − 4.91 GB 0.69 9.15 9.84
Ours 55 MB 240 B 30 MB 85 MB 0.40 7.42 7.82

Ratio / Speedup 87× 475k× − 60× 1.7× 1.2× 1.25×

(a) Cutlery (Scratches)

(b) Snail (Isotropic)

(c) Car (Flakes)

Figure 9: Comparison between Gamboa et al. [GGN18] and our method on various complex scenes. The third column shows FLIP error of
Gamboa et al. (left) and our method (right) computed against a Monte-Carlo reference with 16k spp. We have a lower FLIP score in all the
scenes with a much lower memory footprint. The full reference image is available in supplemental material.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 12 Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness

Table 2: We isolate rendering cost of our materials (1 spp) shown
in fig. 1. Notice how most rendering time is spent on the background
objects and the ratio estimator for shadows (1k spp Monte Carlo).

Object Normal Map SH Order Time (s)
GxD Ours

Spoon Scratches 60 0.16 0.13
Mug Flakes 40 0.26 0.29
Handle Isotropic 40 0.51 0.51
Kettle Brushed Metal 70 2.04 1.65
Total 2.97 2.58
Ratio Estimator + other objects 3.26

a bigger network is negligible compared to the 4× increase in SH
dot product computation (Table 2).

Spatially varying roughness Figure 1 compares Gamboa et
al. [GGN18] (GxD) and our technique with spatially varying rough-
ness. Supporting this is critical for realistic appearances as can be
observed by the differences in the kettle object. Our method is more
compact and closer to the reference image. Table 2 shows that our
technique is slightly more efficient than GxD, where most of our
computational budget is spent on dot SH computations and the ra-
tio estimator used to compute the shadow of the environment map.
Our supplementary video demonstrates an edition of the surface-
varying roughness texture on the kettle object. Editing the rough-
ness texture only requires rendering a new image without any ad-
ditional computations, thanks to our roughness-independent NDF
representation and fast and compact SH projections.

Different light configuration Our method is primarily designed
to work with large light sources, such as environmental lighting,
to produce noise-free images. Figure 11 shows a comparison be-
tween the reference and our technique under various lighting con-
figurations. For each lighting configuration, we produce a single
environment map that is then projected onto SH. Using clipped SH
expansion [BXH∗18] to support area light sources in our technique
is left as future work.

7. Limitations & Future Work

Our focus is on rendering of glinty surfaces controlled by a normal
map lit under environment lighting. We can analytically project a
point light or directional light to spherical harmonics for a holistic
approach using closed-form solutions. However, projecting delta
lights is impractical due to the necessary order and potential SH
banding artifacts. In our current implementation, we choose a more
practical solution using the pruning approach proposed in prior
work [GGN18]. Delta light poses no integration challenges, as we
only need to evaluate the filtered NDFs. However, our approach is
based on the assumption of performing analytical light integration
using SH. The balance between histogram resolution, roughness
and SH order is key to getting the most efficient representation.

Our method focuses on resolving aliasing caused due to shad-
ing using a single sample. However, aliasing due to geometric dis-
continuities is still visible. Such geometric aliasing can be easily

Figure 10: Comparison of different histogram resolutions. Increas-
ing the resolution by a factor of two has minor local improvements
in discretization error at the expense of increased memory usage.
Memory figures are only for our neural histogram storage.

mitigated by well known methods such as super sampling (SSAA)
[Ake93] the entire image, or supersampling only at the geometric
boundaries (MSAA) [SKS11].

One of our current challenges is that the cost of our neural his-
togram depends on normal map and P-NDF resolutions. We ex-
perimented with differentiable codebook [TMND∗23] and differ-
entiable indirection [DMD∗23], but found difficulties balancing
compression and keeping sharp features of the P-NDF, essential to
faithful surface appearance. In section 4.1, we introduced a global
parameterization for our adaptive histogram. An interesting idea is
to perform this adaptive parametrization on-the-fly based on the
pixel footprint P and local lighting information. Frame predic-
tion methods such as Zeltner et al. [ZRW∗23] may inspire, how-
ever, it remains unclear how this approach can be scaled up to our
binned NDF representation. Another orthogonal solution to reduce
our memory consumption is to explore the use of tiling [DLW∗22]
and generative approach [AWKK21] to produce on-the-fly infinite
spatial NDF.

Like all SH-based techniques, we suffer from SH order con-
straints. We can observe that SH computation is one of the biggest
bottlenecks to our technique (table 1). The fast rotation array for the
light SH is 342 MB, which is 4 times more than the memory usage
for all our other components. As future work, we want to explore
alternative bases [XZW∗22] to overcome these issues.

Our method uses square footprints relying on a representation
of MIP-mapping style. To obtain a better P-NDF, we could use
multiple queries, similar to anisotropic filtering, at an added cost.
As future work, we want to explore other feature space designs to
support anisotropic filtering in a single query, similar to recent work
by Deliot et al. [DB23].

8. Conclusion

We presented a novel method to capture complex material appear-
ances arising from spatially varying roughness and high-resolution
normal maps. Our solution relies on an adaptive histogram rep-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness 11 of 12

Figure 11: We show renderings of our method for different-sized
light sources. Our method matches closely to the ground truth ob-
tained using MC with 10k spp for various lighting configurations.

resentation coupled with neural network interpolation to filter P-
NDF at different scales. Our representation allows for decoupling
of the histogram representation and the spatially varying rough-
ness. Roughness is computed and filtered at run-time, and we per-
form a fast SH coefficient computation using our new compact ZH
representation. Finally, we compute the complex P-NDF - Light
integral in a single dot product of SH vectors. We believe our tech-
nique pushes the realism of materials and opens a venue for future
research.

9. Acknowledgements

We would like to thank Ling-Qi Yan for providing normal maps and
the Snail and Cutlery models. All figures use environment maps
obtained from PolyHaven and are available under a CC0 license.
The Beetle Car was made by Rodrigo Marini and is available at
BlenderKit under Royalty Free license. We also thank Aakash K.
T. and Rahul Goel for their feedback on the paper. Ishaan Shah was
partially funded by KCIS during his Master’s.

References
[Ake93] AKELEY K.: Reality engine graphics. In Annual Confer-

ence Series (Proceedings of SIGGRAPH) (New York, NY, USA, 1993),
SIGGRAPH ’93, Association for Computing Machinery, p. 109–116.
doi:10/fqv9pn. 10

[ANA∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-
KARSSON M., ÅSTRÖM K., FAIRCHILD M. D.: FLIP: A Difference
Evaluator for Alternating Images. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques 3, 2 (2020), 15:1–15:23.
doi:10/gnbnp5. 8

[AV07] ARTHUR D., VASSILVITSKII S.: k-means++: the advantages of
careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (USA, 2007), SODA ’07, Society
for Industrial and Applied Mathematics, p. 1027–1035. 5

[AWKK21] ATANASOV A., WILKIE A., KOYLAZOV V., KŘIVÁNEK J.:
A Multiscale Microfacet Model Based on Inverse Bin Mapping. Com-
puter Graphics Forum (Proceedings of Eurographics) 40, 2 (2021), 103–
113. doi:10/gsmm6q. 2, 3, 10

[BS63] BECKMANN P., SPIZZICHINO A.: The Scattering of Electromag-
netic Waves from Rough Surfaces. Pergamon Press, NY, 1963. 2

[BXH∗18] BELCOUR L., XIE G., HERY C., MEYER M., JAROSZ W.,
NOWROUZEZAHRAI D.: Integrating clipped spherical harmonics expan-
sions. ACM Transactions on Graphics 37, 2 (Mar. 2018), 19:1–19:12.
doi:10/gd52pf. 10

[CSDD20] CHERMAIN X., SAUVAGE B., DISCHLER J.-M., DACHS-
BACHER C.: Procedural Physically-based BRDF for Real-Time Ren-

dering of Glints. Comput. Graph. Forum (Proc. Pacific Graphics) 39, 7
(2020), 243–253. 2

[CT81] COOK R. L., TORRANCE K. E.: A reflectance model for com-
puter graphics. Computer Graphics (Proceedings of SIGGRAPH) 15, 3
(Aug. 1981), 307–316. doi:10/br5ps6. 3

[DB23] DELIOT T., BELCOUR L.: Real-Time Rendering of Glinty Ap-
pearances using Distributed Binomial Laws on Anisotropic Grids. Com-
puter Graphics Forum 42, 8 (2023), e14866. doi:10/mq8s. 10

[DHI∗13] DUPUY J., HEITZ E., IEHL J.-C., POULIN P., NEYRET F.,
OSTROMOUKHOV V.: Linear efficient antialiased displacement and re-
flectance mapping. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH Asia) 32, 6 (2013), 211:1–211:11. doi:10/gbd53f. 2

[DLW∗22] DENG H., LIU Y., WANG B., YANG J., MA L.,
HOLZSCHUCH N., YAN L.-Q.: Constant-Cost Spatio-Angular Prefilter-
ing of Glinty Appearance Using Tensor Decomposition. ACM Transac-
tions on Graphics 41, 2 (Jan. 2022), 22:1–22:17. doi:10/mq8t. 2, 5,
10

[DMD∗23] DATTA S., MARSHALL C., DONG Z., LI Z.,
NOWROUZEZAHRAI D.: Efficient Graphics Representation with
Differentiable Indirection. In SIGGRAPH Asia 2023 Conference
Papers (New York, NY, USA, Dec. 2023), Association for Computing
Machinery, pp. 1–10. doi:10/mq8z. 2, 10

[FWH∗22] FAN J., WANG B., HASAN M., YANG J., YAN L.-Q.: Neu-
ral Layered BRDFs. In ACM SIGGRAPH 2022 Conference Proceedings
(New York, NY, USA, July 2022), Association for Computing Machin-
ery, pp. 1–8. doi:10/gshv3t. 3

[GFL∗22] GAUTHIER A., FAURY R., LEVALLOIS J., THONAT T.,
THIERY J.-M., BOUBEKEUR T.: MIPNet: Neural normal-to-
anisotropic-roughness MIP mapping. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia) 41, 6 (Nov. 2022), 246:1–246:12.
doi:10/grqvfc. 3

[GGN18] GAMBOA L. E., GUERTIN J.-P., NOWROUZEZAHRAI D.:
Scalable appearance filtering for complex lighting effects. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (Dec. 2018),
277:1–277:13. doi:10/ggfg4g. 2, 3, 4, 5, 6, 7, 8, 9, 10

[GHS∗22] GUERRERO P., HAŠAN M., SUNKAVALLI K., MĚCH R.,
BOUBEKEUR T., MITRA N. J.: MatFormer: A generative model for
procedural materials. ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 41, 4 (July 2022), 46:1–46:12. doi:10/gqjn68. 3

[HGC∗20] HU B., GUO J., CHEN Y., LI M., GUO Y.: DeepBRDF:
A Deep Representation for Manipulating Measured BRDF. Computer
Graphics Forum (Proceedings of Eurographics) 39, 2 (2020), 157–166.
doi:10/gpwj7j. 3

[HGH∗23] HU Y., GUERRERO P., HASAN M., RUSHMEIER H., DE-
SCHAINTRE V.: Generating procedural materials from text or image
prompts. In ACM SIGGRAPH 2023 Conference Proceedings (New
York, NY, USA, 2023), Association for Computing Machinery. doi:
10/mrj7. 3

[HHM18] HEITZ E., HILL S., MCGUIRE M.: Combining analytic direct
illumination and stochastic shadows. In Proceedings of the Symposium
on Interactive 3D Graphics and Games (New York, NY, USA, 2018),
ACM Press, pp. 2:1–2:11. doi:10/gfznb7. 7

[HP17] HOLZSCHUCH N., PACANOWSKI R.: A two-scale microfacet re-
flectance model combining reflection and diffraction. ACM Transactions
on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 66:1–66:12.
doi:10/gbxhc7. 2

[Ige99] IGEHY H.: Tracing ray differentials. In Annual Conference Series
(Proceedings of SIGGRAPH) (Aug. 1999), vol. 33, ACM Press, pp. 179–
186. doi:10/c2t9t9. 3

[JHY∗14] JAKOB W., HAŠAN M., YAN L.-Q., LAWRENCE J., RA-
MAMOORTHI R., MARSCHNER S.: Discrete stochastic microfacet mod-
els. ACM Transactions on Graphics 33, 4 (July 2014), 1–10. doi:
10/f6cnzx. 2, 3

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://polyhaven.com
https://www.blenderkit.com/asset-gallery?query=beetle+order:_score+author_id:72187
https://doi.org/10/fqv9pn
https://doi.org/10/gnbnp5
https://doi.org/10/gsmm6q
https://doi.org/10/gd52pf
https://doi.org/10/br5ps6
https://doi.org/10/mq8s
https://doi.org/10/gbd53f
https://doi.org/10/mq8t
https://doi.org/10/mq8z
https://doi.org/10/gshv3t
https://doi.org/10/grqvfc
https://doi.org/10/ggfg4g
https://doi.org/10/gqjn68
https://doi.org/10/gpwj7j
https://doi.org/10/mrj7
https://doi.org/10/mrj7
https://doi.org/10/gfznb7
https://doi.org/10/gbxhc7
https://doi.org/10/c2t9t9
https://doi.org/10/f6cnzx
https://doi.org/10/f6cnzx

12 of 12 Shah, Gamboa, Gruson, Narayanan / Neural Histogram-Based Glint Rendering of Surfaces With Spatially Varying Roughness

[JSR∗22] JAKOB W., SPEIERER S., ROUSSEL N., NIMIER-DAVID
M., VICINI D., ZELTNER T., NICOLET B., CRESPO M., LEROY
V., ZHANG Z.: Mitsuba 3 renderer, 2022. URL: https://
mitsuba-renderer.org. 7

[Kaj86] KAJIYA J. T.: The rendering equation. Computer Graph-
ics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 143–150. doi:
10/cvf53j. 3

[KB09] KOLDA T. G., BADER B. W.: Tensor decompositions and ap-
plications. SIAM review 51, 3 (2009), 455–500. doi:10/dzcrv6. 2,
5

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv:1412.6980 [cs] (Dec. 2014). arXiv:1412.6980. 7

[KHX∗19] KUZNETSOV A., HAŠAN M., XU Z., YAN L.-Q., WAL-
TER B., KALANTARI N. K., MARSCHNER S., RAMAMOORTHI R.:
Learning generative models for rendering specular microgeometry. ACM
Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Nov.
2019), 225:1–225:14. doi:10/ggfg2w. 3

[KMX∗21] KUZNETSOV A., MULLIA K., XU Z., HAŠAN M., RA-
MAMOORTHI R.: NeuMIP: multi-resolution neural materials. ACM
Transactions on Graphics 40, 4 (July 2021), 175:1–175:13. doi:
10/gpwj7q. 3, 5

[M2̈1] MÜLLER T.: tiny-cuda-nn, 4 2021. URL: https://github.
com/NVlabs/tiny-cuda-nn. 7

[MESK22] MÜLLER T., EVANS A., SCHIED C., KELLER A.: Instant
neural graphics primitives with a multiresolution hash encoding. ACM
Transactions on Graphics 41, 4 (July 2022), 102:1–102:15. doi:10/
gqkpt7. 2

[OB10] OLANO M., BAKER D.: LEAN mapping. In Proceedings of the
Symposium on Interactive 3D Graphics and Games (2010), pp. 181–188.
doi:10/fkbvpn. 2

[PGC∗17] PASZKE A., GROSS S., CHINTALA S., CHANAN G., YANG
E., DEVITO Z., LIN Z., DESMAISON A., ANTIGA L., LERER A.: Au-
tomatic differentiation in pytorch. 7

[RGB16] RAYMOND B., GUENNEBAUD G., BARLA P.: Multi-scale
rendering of scratched materials using a structured SV-BRDF model.
ACM Transactions on Graphics 35, 4 (July 2016), 57:1–57:11. doi:
10/f89j85. 2

[RGJW20] RAINER G., GHOSH A., JAKOB W., WEYRICH T.: Unified
Neural Encoding of BTFs. Computer Graphics Forum (Proceedings of
Eurographics) 39, 2 (2020), 167–178. doi:10/gg792d. 3

[SKS11] SOUSA T., KASYAN N., SCHULZ N.: Secrets of cryengine 3
graphics technology. In ACM SIGGRAPH (2011), vol. 1. 10

[SLS05] SLOAN P.-P., LUNA B., SNYDER J.: Local, deformable pre-
computed radiance transfer. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH) 24, 3 (July 2005), 1216–1224. doi:10/bvb8qw.
7

[TMND∗23] TAKIKAWA T., MÜLLER T., NIMIER-DAVID M., EVANS
A., FIDLER S., JACOBSON A., KELLER A.: Compact neural graphics
primitives with learned hash probing. In SIGGRAPH Asia 2023 Confer-
ence Papers (2023). 10

[VSW∗23] VAIDYANATHAN K., SALVI M., WRONSKI B., AKENINE-
MOLLER T., EBELIN P., LEFOHN A.: Random-access neural compres-
sion of material textures. ACM Transactions on Graphics (Proceedings
of SIGGRAPH) 42, 4 (July 2023), 88:1–88:25. doi:10/gsk4fz. 7

[WDH20] WANG B., DENG H., HOLZSCHUCH N.: Real-Time Glints
Rendering With Pre-Filtered Discrete Stochastic Microfacets. Computer
Graphics Forum 39, 6 (Sept. 2020), 144–154. doi:10/mq9k. 2

[Wil83] WILLIAMS L.: Pyramidal parametrics. Computer Graph-
ics (Proceedings of SIGGRAPH) 17, 3 (July 1983), 1–11. doi:10/
cq4xrd. 2

[WMLT07] WALTER B., MARSCHNER S. R., LI H., TORRANCE K. E.:

Microfacet models for refraction through rough surfaces. In Render-
ing Techniques (Proceedings of the Eurographics Symposium on Ren-
dering) (June 2007), Eurographics Association, pp. 195–206. doi:
10/gfz4kg. 2

[XWH∗23] XU B., WU L., HASAN M., LUAN F., GEORGIEV I., XU Z.,
RAMAMOORTHI R.: NeuSample: Importance Sampling for Neural Ma-
terials. In ACM SIGGRAPH 2023 Conference Proceedings (New York,
NY, USA, July 2023), Association for Computing Machinery, pp. 1–10.
doi:10/gsk4js. 3

[XZW∗22] XU Z., ZENG Z., WU L., WANG L., YAN L.-Q.:
Lightweight Neural Basis Functions for All-Frequency Shading. In
SIGGRAPH Asia 2022 Conference Papers (New York, NY, USA, Nov.
2022), Association for Computing Machinery, pp. 1–9. doi:10/
grqvdr. 10

[YHJ∗14] YAN L.-Q., HAŠAN M., JAKOB W., LAWRENCE J.,
MARSCHNER S., RAMAMOORTHI R.: Rendering glints on high-
resolution normal-mapped specular surfaces. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 33, 4 (July 2014), 116:1–116:9.
doi:10/f6cprr. 2, 3

[YHMR16] YAN L.-Q., HAŠAN M., MARSCHNER S., RAMAMOORTHI
R.: Position-normal distributions for efficient rendering of specular mi-
crostructure. ACM Transactions on Graphics 35, 4 (July 2016), 56:1–
56:9. doi:10/f89kqw. 2

[YHW∗18] YAN L.-Q., HAŠAN M., WALTER B., MARSCHNER S., RA-
MAMOORTHI R.: Rendering specular microgeometry with wave optics.
ACM Transactions on Graphics (Proceedings of SIGGRAPH) 37, 4 (July
2018), 75:1–75:10. doi:10/gd52td. 2

[ZK16] ZIRR T., KAPLANYAN A. S.: Real-time rendering of procedural
multiscale materials. In Proceedings of the 20th ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games (New York, NY, USA,
Feb. 2016), I3D ’16, Association for Computing Machinery, pp. 139–
148. doi:10/gmdkv6. 2

[ZRW∗23] ZELTNER T., ROUSSELLE F., WEIDLICH A., CLARBERG P.,
NOVÁK J., BITTERLI B., EVANS A., DAVIDOVIČ T., KALLWEIT S.,
LEFOHN A.: Real-Time Neural Appearance Models. 3, 5, 10

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://mitsuba-renderer.org
https://mitsuba-renderer.org
https://doi.org/10/cvf53j
https://doi.org/10/cvf53j
https://doi.org/10/dzcrv6
http://arxiv.org/abs/1412.6980
https://doi.org/10/ggfg2w
https://doi.org/10/gpwj7q
https://doi.org/10/gpwj7q
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10/gqkpt7
https://doi.org/10/gqkpt7
https://doi.org/10/fkbvpn
https://doi.org/10/f89j85
https://doi.org/10/f89j85
https://doi.org/10/gg792d
https://doi.org/10/bvb8qw
https://doi.org/10/gsk4fz
https://doi.org/10/mq9k
https://doi.org/10/cq4xrd
https://doi.org/10/cq4xrd
https://doi.org/10/gfz4kg
https://doi.org/10/gfz4kg
https://doi.org/10/gsk4js
https://doi.org/10/grqvdr
https://doi.org/10/grqvdr
https://doi.org/10/f6cprr
https://doi.org/10/f89kqw
https://doi.org/10/gd52td
https://doi.org/10/gmdkv6

